Convex optimization and Euclidean distance geometry 1st Edition by Jon Dattorro – Ebook PDF Instant Download/Delivery: 0976401304, 9780976401308
Full download Convex optimization and Euclidean distance geometry 1st Edition after payment
Product details:
ISBN 10: 0976401304
ISBN 13: 9780976401308
Author: Jon Dattorro
Table of contents:
1 Overview
2 Convex geometry
2.1 Convex set
2.2 Vectorized-matrix inner product
2.3 Hulls
2.4 Halfspace, Hyperplane
2.5 Subspace representations
2.6 Extreme, Exposed
2.7 Cones
2.8 Cone boundary
2.9 Positive semidefinite (PSD) cone
2.10 Conic independence (c.i.)
2.11 When extreme means exposed
2.12 Convex polyhedra
2.13 Dual cone & generalized inequality
3 Geometry of convex functions
3.1 Convex function
3.2 Practical norm functions, absolute value
3.3 Inverted functions and roots
3.4 Affine function
3.5 Epigraph, Sublevel set
3.6 Gradient
3.7 Convex matrix-valued function
3.8 Quasiconvex
3.9 Salient properties
4 Semidefinite programming
4.1 Conic problem
4.2 Framework
4.3 Rank reduction
4.4 Rank-constrained semidefinite program
4.5 Constraining cardinality
4.6 Cardinality and rank constraint examples
4.7 Constraining rank of indefinite matrices
4.8 Convex Iteration rank-1
5 Euclidean Distance Matrix
5.1 EDM
5.2 First metric properties
5.3 ∃ fifth Euclidean metric property
5.4 EDM definition
5.5 Invariance
5.6 Injectivity of D & unique reconstruction
5.7 Embedding in affine hull
5.8 Euclidean metric versus matrix criteria
5.9 Bridge: Convex polyhedra to EDMs
5.10 EDM-entry composition
5.11 EDM indefiniteness
5.12 List reconstruction
5.13 Reconstruction examples
5.14 Fifth property of Euclidean metric
6 Cone of distance matrices
6.1 Defining EDM cone
6.2 Polyhedral bounds
6.3 √EDM cone is not convex
6.4 EDM definition in 11T
6.5 Correspondence to PSD cone SN−1+
6.6 Vectorization & projection interpretation
6.7 A geometry of completion
6.8 Dual EDM cone
6.9 Theorem of the alternative
6.10 Postscript
7 Proximity problems
7.1 First prevalent problem
7.2 Second prevalent problem
7.3 Third prevalent problem
7.4 Conclusion
A Linear algebra
A.1 Main-diagonal δ operator, λ, trace, vec
A.2 Semidefiniteness: domain of test
A.3 Proper statements
A.4 Schur complement
A.5 Eigenvalue decomposition
A.6 Singular value decomposition, SVD
A.7 Zeros
B Simple matrices
B.1 Rank-one matrix (dyad)
B.2 Doublet
B.3 Elementary matrix
B.4 Auxiliary V-matrices
B.5 Orthogonal matrix
C Some analytical optimal results
C.1 Properties of infima
C.2 Trace, singular and eigen values
C.3 Orthogonal Procrustes problem
C.4 Two-sided orthogonal Procrustes
C.5 Nonconvex quadratics
D Matrix calculus
D.1 Directional derivative, Taylor series
D.2 Tables of gradients and derivatives
E Projection
E.1 Idempotent matrices
E.2 I − P, Projection on algebraic complement
E.3 Symmetric idempotent matrices
E.4 Algebra of projection on affine subsets
E.5 Projection examples
E.6 Vectorization interpretation
E.7 Projection on matrix subspaces
E.8 Range/Rowspace interpretation
E.9 Projection on convex set
E.10 Alternating projection
F Notation and a few definitions
People also search:
convex optimization online course
convex optimization course
convex optimization exercise solution
convex optimization lectures
convex optimization coursera
Tags: Jon Dattorro, Convex, optimization, Euclidean