Gas Turbine Combustion Alternative Fuels and Emissions 3rd Edition by Arthur Lefebvre, Dilip Ballal – Ebook PDF Instant Download/Delivery: 1138569585, 9781138569584
Full download Gas Turbine Combustion Alternative Fuels and Emissions 3rd Edition after payment
Product details:
ISBN 10: 1138569585
ISBN 13: 9781138569584
Author: Arthur H. Lefebvre, Dilip R. Ballal
Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical
Table of contents:
1 Basic Cons iderations
1.1 Introduction
1.2 Early Combustor Developments
1.2.1 Britain
1.2.2 Germany
1.2.2.1 Jumo 004
1.2.2.2 BMW 003
1.2.3 The United States
1.3 Basic Design Features
1.4 Combustor Requirements
1.5 Combustor Types
1.5.1 Tubular
1.5.2 Tuboannular
1.5.3 Annular
1.6 Diffuser
1.7 Primary Zone
1.8 Intermediate Zone
1.9 Dilution Zone
1.10 Fuel Preparation
1.10.1 Pressure–Swirl Atomizers
1.10.2 Airblast Atomizer
1.10.3 Gas Injection
1.11 Wall Cooling
1.11.1 Wall–Cooling Techniques
1.12 Combustors for Low Emissions
1.13 Combustors for Small Engines
1.14 Industrial Chambers
1.14.1 Aeroderivative Engines
References
Bibliography
2 Combustion Fundamentals
2.1 Introduction
2.1.1 Deflagration
2.1.2 Detonation
2.2 Classification of Flames
2.3 Physics or Chemistry?
2.4 Flammability Limits
2.5 Global Reaction–Rate Theory
2.5.1 Weak Mixtures
2.5.2 Rich Mixtures
2.6 Laminar Premixed Flames
2.6.1 Factors Influencing Laminar Flame Speed
2.6.1.1 Equivalence Ratio
2.6.1.2 Initial Temperature
2.6.1.3 Pressure
2.7 Laminar Diffusion Flames
2.8 Turbulent Premixed Flames
2.9 Flame Propagation in Heterogeneous Mixtures of Fuel Drops, Fuel Vapor, and Air
2.10 Droplet and Spray Evaporation
2.10.1 Heat–Up Period
2.10.2 Evaporation Constant
2.10.3 Convective Effects
2.10.4 Effective Evaporation Constant
2.10.5 Spray Evaporation
2.10.6 Some Recent Developments
2.11 Ignition Theory
2.11.1 Gaseous Mixtures
2.11.2 Heterogeneous Mixtures
2.12 Spontaneous Ignition
2.13 Flashback
2.14 Stoichiometry
2.15 Adiabatic Flame Temperature
2.15.1 Factors Influencing the Adiabatic Flame Temperature
2.15.1.1 Fuel/Air Ratio
2.15.1.2 Initial Air Temperature
2.15.1.3 Pressure
2.15.1.4 Inlet–Air Vitiation
Nomenclature
References
Bibliography
3 Diffusers
3.1 Introduction
3.2 Diffuser Geometry
3.3 Flow Regimes
3.4 Performance Criteria
3.4.1 Pressure–Recovery Coefficient
3.4.2 Ideal Pressure–Recovery Coefficient
3.4.3 Overall Effectiveness
3.4.4 Loss Coefficient
3.4.5 Kinetic–Energy Coefficient
3.5 Performance
3.5.1 Conical Diffusers
3.5.2 Two–Dimensional Diffusers
3.5.3 Annular Diffusers
3.6 Effect of Inlet Flow Conditions
3.6.1 Reynolds Number
3.6.2 Mach Number
3.6.3 Turbulence
3.6.4 Swirl
3.7 Design Considerations
3.7.1 Faired Diffusers
3.7.2 Dump Diffusers
3.7.2.1 Influence of Liner Depth Ratio
3.7.3 Splitter Vanes
3.7.4 Vortex–Controlled Diffuser
3.7.5 Hybrid Diffuser
3.7.6 Diffusers for Tubular and Tuboannular Combustors
3.7.7 Testing of Diffusers
3.8 Numerical Simulations
Nomenclature
Subscripts
References
4 Aerodynamics
4.1 Introduction
4.2 Reference Quantities
4.3 Pressure–Loss Parameters
4.4 Relationship between Size and Pressure Loss
4.5 Flow in the Annulus
4.6 Flow through Liner Holes
4.6.1 Discharge Coefficient
4.6.2 Initial Jet Angle
4.7 Jet Trajectories
4.7.1 Experiments on Single Jets
4.7.2 Penetration of Multiple Jets
4.8 Jet Mixing
4.8.1 Cylindrical Ducts
4.8.2 Rectangular Ducts
4.8.2.1 Influence of Density Ratio
4.8.3 Annular Ducts
4.9 Temperature Traverse Quality
4.10 Dilution Zone Design
4.10.1 Cranfield Design Method
4.10.2 NASA Design Method
4.10.3 Comparison of Cranfield and NASA Design Methods
4.11 Correlation of Pattern Factor Data
4.12 Rig Testing for Pattern Factor
4.13 Swirler Aerodynamics
4.14 Axial Swirlers
4.14.1 Swirl Number
4.14.2 Size of Recirculation Zone
4.14.3 Flow Reversal
4.14.4 Influence of Swirler Exit Geometry
4.15 Radial Swirlers
4.16 Flat Vanes Versus Curved Vanes
Nomenclature
Subscripts
References
5 Combustion Performance
5.1 Introduction
5.2 Combustion Efficiency
5.2.1 The Combustion Process
5.3 Reaction–Controlled Systems
5.3.1 Burning Velocity Model
5.3.2 Stirred Reactor Model
5.4 Mixing–Controlled Systems
5.5 Evaporation–Controlled Systems
5.6 Reaction– and Evaporation–Controlled Systems
5.7 Flame Stabilization
5.7.1 Definition of Stability Performance
5.7.2 Measurement of Stability Performance
5.7.3 Water Injection Technique
5.8 Bluff–Body Flameholders
5.8.1 Experimental Findings on Bluff–Body Flame Stabilization
5.8.1.1 Homogeneous Mixtures
5.8.1.2 Heterogeneous Mixtures
5.8.2 Summary of Experimental Findings
5.9 Mechanisms of Flame Stabilization
5.9.1 Homogeneous Mixtures
5.9.2 Heterogeneous Mixtures
5.10 Flame Stabilization in Combustion Chambers
5.10.1 Influence of Mode of Fuel Injection
5.10.2 Correlation of Experimental Data
5.11 Ignition
5.12 Assessment of Ignition Performance
5.13 Spark Ignition
5.13.1 The High–Energy Ignition Unit
5.13.2 The Surface Discharge Igniter
5.13.2.1 Igniter Performance
5.13.2.2 Igniter Design
5.13.2.3 Igniter Life
5.14 Other Forms of Ignition
5.14.1 Torch Igniter
5.14.2 Glow Plug
5.14.3 Hot–Surface Ignition
5.14.4 Plasma Jet
5.14.5 Laser Ignition
5.14.6 Chemical Ignition
5.14.7 Gas Addition
5.14.8 Oxygen Injection
5.15 Factors Influencing Ignition Performance
5.15.1 Ignition System
5.15.1.1 Spark Energy
5.15.1.2 Spark Duration
5.15.1.3 Sparking Rate
5.15.1.4 Igniter Location
5.15.2 Flow Variables
5.15.2.1 Air Pressure
5.15.2.2 Air Temperature
5.15.2.3 Air Velocity
5.15.2.4 Turbulence
5.15.3 Fuel Parameters
5.15.3.1 Fuel Type
5.15.3.2 Fuel/Air Ratio
5.15.3.3 Spray Characteristics
5.15.3.4 Fuel Temperature
5.16 The Ignition Process
5.16.1 Factors Influencing Phase 1
5.16.2 Factors Influencing Phase 2
5.16.3 Factors Influencing Phase 3
5.17 Methods of Improving Ignition Performance
5.17.1 Correlation of Experimental Data
Nomenclature
Subscripts
References
6 Fuel Injection
6.1 Basic Processes in Atomization
6.1.1 Introduction
6.1.2 Breakup of Drops
6.1.2.1 Drop Breakup in Turbulent Flow Fields
6.2 Classical Mechanism of Jet and Sheet Breakup
6.2.1 Breakup of Fuel Jets
6.2.2 Breakup of Fuel Sheets
6.3 Prompt Atomization
6.4 Classical or Prompt?
6.5 Drop–Size Distributions
6.5.1 Graphical Representation of Drop–Size Distributions
6.5.2 Mathematical Distribution Functions
6.5.3 Rosin–Rammler
6.5.4 Modified Rosin–Rammler
6.5.5 Mean Diameters
6.5.6 Representative Diameters
6.5.7 Prediction of Drop–Size Distributions
6.6 Atomizer Requirements
6.7 Pressure Atomizers
6.7.1 Plain Orifice
6.7.2 Simplex
6.7.3 Dual Orifice
6.7.4 Spill Return
6.8 Rotary Atomizers
6.9 Air–Assist Atomizers
6.10 Airblast Atomizers
6.10.1 Plain–Jet Airblast
6.10.2 Prefilming Airblast
6.10.3 Piloted Airblast
6.10.4 Airblast Simplex
6.11 Effervescent Atomizers
6.12 Vaporizers
6.13 Fuel Nozzle Coking
6.14 Gas Injection
6.15 Equations for Mean Drop Size
6.16 Smd Equations for Pressure Atomizers
6.16.1 Plain Orifice
6.16.2 Pressure Swirl
6.17 Smd Equations for Twin–Fluid Atomizers
6.18 Smd Equations for Prompt Atomization
6.18.1 Comments on SMD Equations
6.19 Internal Flow Characteristics
6.20 Flow Number
6.21 Discharge Coefficient
6.21.1 Plain–Orifice Atomizers
6.21.2 Pressure–Swirl Atomizers
6.21.3 Film Thickness
6.22 Spray Cone Angle
6.22.1 Plain–Orifice Atomizers
6.22.2 Pressure–Swirl Atomizers
6.22.2.1 Theoretical Aspects
6.23 Radial Fuel Distribution
6.24 Circumferential Fuel Distribution
6.24.1 Pressure–Swirl Atomizers
6.24.2 Airblast Atomizers
Nomenclature
Subscripts
References
7 Combustion Noise
7.1 Introduction
7.2 Direct Combustion Noise
7.2.1 Theory
7.2.2 Core Noise Prediction Methods
7.3 Combustion Instabilities
7.3.1 Descriptions of Acoustic Oscillations
7.3.1.1 Growl
7.3.1.2 Howl
7.3.2 Characteristic Times
7.3.3 Influence of Fuel Type
7.3.4 Influence of Combustor Operating Conditions
7.3.5 Influence of Ambient Conditions
7.3.6 Aerodynamic Instabilities
7.3.7 Fuel–Injector Instabilities
7.3.8 Compressor–Induced Oscillations
7.3.9 LPM Combustor Noise
7.3.10 Test Rig Simulations
7.4 Control of Combustion Instabilities
7.4.1 Passive Control
7.4.2 Active Control
7.4.2.1 Open–Loop Systems
7.4.2.2 Closed–Loop Systems
7.4.3 Examples of Active Control
7.4.4 Influence of Control Signal Frequency
7.5 Modeling of Combustion Instabilities
References
Bibliography
8 Heat Transfer
8.1 Introduction
8.2 Heat–Transfer Processes
8.3 Internal Radiation
8.3.1 Radiation from Nonluminous Gases
8.3.2 Radiation from Luminous Gases
8.4 External Radiation
8.5 Internal Convection
8.6 External Convection
8.7 Calculation of Uncooled Liner Temperature
8.7.1 Method of Calculation
8.7.2 Significance of Calculated Uncooled Liner Temperatures
8.8 Film Cooling
8.8.1 Wigglestrips
8.8.2 Stacked Ring
8.8.3 Splash–Cooling Ring
8.8.4 Machined Ring
8.8.5 Rolled Ring
8.8.6 Z Ring
8.9 Correlation of Film–Cooling Data
8.9.1 Theories Based on Turbulent Boundary–Layer Model
8.9.2 Theories Based on Wall–Jet Model
8.9.3 Calculation of Film–Cooled Wall Temperature
8.9.4 Film Cooling with Augmented Convection
8.9.5 Impingement Cooling
8.9.6 Transpiration Cooling
8.10 Practical Applications of Transpiration Cooling
8.10.1 Transply
8.10.2 Lamilloy
8.10.3 Effusion Cooling
8.11 Advanced Wall–Cooling Methods
8.11.1 Angled Effusion Cooling
8.11.2 Tiles
8.12 Augmented Cold–Side Convection
8.13 Thermal Barrier Coatings
8.14 Materials
8.14.1 Metal Alloys
8.14.2 Ceramics
8.14.3 Mechanical Integrity
8.15 Liner Failure Modes
Nomenclature
Subscripts
References
9 Emissions
9.1 Introduction
9.2 Concerns
9.3 Regulations
9.3.1 Aircraft Engines
9.3.2 Stationary Gas Turbines
9.4 Mechanisms of Pollutant Formation
9.4.1 Carbon Monoxide
9.4.1.1 Influence of Equivalence Ratio
9.4.1.2 Influence of Pressure
9.4.1.3 Influence of Ambient Air Temperature
9.4.1.4 Influence of Wall–Cooling Air
9.4.1.5 Influence of Fuel Atomization
9.4.2 Unburned Hydrocarbons
9.4.3 Smoke
9.4.3.1 Influence of Pressure
9.4.3.2 Influence of Fuel Type
9.4.3.3 Influence of Fuel Atomization
9.4.4 Oxides of Nitrogen
9.4.4.1 Thermal Nitric Oxide
9.4.4.1.1 Influence of Inlet Air Temperature
9.4.4.1.2 Influence of Residence Time
9.4.4.2 Nitrous Oxide Mechanism
9.4.4.3 Prompt Nitric Oxide
9.4.4.4 Fuel Nitric Oxide
9.4.5 Influence of Pressure on Oxides of Nitrogen Formation
9.4.6 Influence of Fuel Atomization on Oxides of Nitrogen Formation
9.5 Pollutants Reduction in Conventional Combustors
9.5.1 Carbon Monoxide and Unburned Hydrocarbons
9.5.2 Smoke
9.5.3 Oxides of Nitrogen
9.5.3.1 Water Injection
9.5.3.2 Selective Catalytic Reduction
9.5.3.3 Exhaust Gas Recirculation
9.6 Pollutants Reduction by Control of Flame Temperature
9.6.1 Variable Geometry
9.6.2 Staged Combustion
9.7 Dry Low–Oxides of Nitrogen Combustors
9.7.1 Solar Dry Low–Emissions Concepts
9.7.2 Siemens Hybrid Burner
9.7.3 General Electric DLN Combustor
9.7.3.1 Primary
9.7.3.2 Lean–Lean
9.7.3.3 Secondary
9.7.3.4 Premix
9.7.4 ABB EV Burner
9.7.5 Rolls Royce RB211 Industrial Burner
9.7.6 EGT DLN Combustor
9.7.7 General Electric LM6000 Combustor
9.7.8 Allison AGT100 Combustor
9.7.9 Developments in Japan
9.8 Lean Premix Prevaporize Combustion
9.8.1 Fuel–Air Premixing
9.9 Rich–Burn, Quick–Quench, Lean–Burn Combustor
9.10 Catalytic Combustion
9.10.1 Design Approaches
9.10.2 Design Constraints
9.10.3 Fuel Preparation
9.10.4 Catalyst Bed Construction
9.10.5 Postcatalyst Combustion
9.10.6 Design and Performance
9.10.7 Use of Variable Geometry
9.10.8 Future
9.11 Correlation and Modeling of Oxides of Nitrogen and Carbon Monoxide Emissions
9.11.1 Oxides of Nitrogen Correlations
9.11.1.1 Odgers and Kretschmer [104]
9.11.1.2 Lewis [105]
9.11.1.3 Rokke et al. [106]
9.11.1.4 Rizk and Mongia [107]
9.11.2 Carbon Monoxide Correlations
9.12 Concluding Remarks
Nomenclature
Subscripts
References
10 Alternative Fuels
10.1 Introduction
10.2 Types of Hydrocarbons
10.2.1 Paraffins
10.2.2 Olefins
10.2.3 Naphthenes
10.2.4 Aromatics
10.3 Production of Liquid Fuels
10.3.1 Removal of Sulfur Compounds
10.3.2 Contaminants
10.3.2.1 Asphaltenes
10.3.2.2 Gum
10.3.2.3 Sediment
10.3.2.4 Ash
10.3.2.5 Water
10.3.2.5.1 Dissolved Water
10.3.2.5.2 Free Water
10.3.2.5.3 Emulsion
10.3.2.6 Sodium
10.3.2.7 Vanadium
10.3.3 Additives
10.3.3.1 Gum Prevention
10.3.3.2 Corrosion Inhibition/Lubricity Improvers
10.3.3.3 Anti–Icing
10.3.3.4 Antistatic–Static Dissipators
10.3.3.5 Metal Deactivators
10.3.3.6 Antismoke
10.4 Fuel Properties
10.4.1 Relative Density
10.4.1.1 API Gravity
10.4.1.2 Molecular Mass
10.4.2 Distillation Range
10.4.3 Vapor Pressure
10.4.4 Flash Point
10.4.5 Volatility Point
10.4.6 Viscosity
10.4.7 Surface Tension
10.4.8 Freezing Point
10.4.9 Specific Heat
10.4.10 Latent Heat
10.4.11 Thermal Conductivity
10.5 Combustion Properties of Fuels
10.5.1 Calorific Value
10.5.2 Enthalpy
10.5.3 Spontaneous–Ignition Temperature
10.5.4 Limits of Flammability
10.5.5 Smoke Point
10.5.5.1 Luminometer Number
10.5.5.2 Smoke Volatility Index
10.5.6 Pressure and Temperature Effects
10.5.6.1 Subatmospheric Pressure
10.5.6.2 Low Temperature
10.5.6.3 High Temperature
10.6 Classification of Liquid Fuels
10.6.1 Aircraft Gas Turbine Fuels
10.6.1.1 Airframe
10.6.1.2 Engine Fuel System
10.6.1.3 Combustion Chamber
10.6.2 Aircraft Fuel Specifications
10.6.3 Industrial Gas Turbine Fuels
10.7 Classification of Gaseous Fuels
10.7.1 Gaseous Fuel Impurities
10.8 Alternative Fuels
10.8.1 Pure Compounds
10.8.1.1 Hydrogen
10.8.1.2 Methane
10.8.1.3 Propane
10.8.1.4 Ammonia
10.8.1.5 Alcohols
10.8.2 Supplemental Fuels
10.8.3 Slurry Fuels
10.9 Synthetic Fuels
10.9.1 Fuels Produced by Fischer–Tropsch Synthesis of Coal/Biomass
10.9.2 Biofuels
10.9.3 Alternative Fuel Properties
10.9.4 Combustion and Emissions Performance
10.9.4.1 Fischer–Tropsch Fuels
10.9.4.2 Biodiesel Fuels
10.9.4.3 Highly Aromatic (Broad Specification) Alternative Fuels
People also search:
gas turbine combustion lefebvre
gas turbine engine emissions
gas turbine combustion lefebvre pdf
gas turbine emissions
gas turbine exhaust composition
Tags: Arthur Lefebvre, Dilip Ballal, Turbine, Combustion, Emissions