Explosive Pulsed Power 1st Edition by Larry Altgilbers, Jason Baird, Bruce Freeman, Christopher Lynch, Sergey Shkuratov – Ebook PDF Instant Download/Delivery: 1848163223, 9781848163225
Full download Explosive Pulsed Power 1st Edition after payment

Product details:
ISBN 10: 1848163223
ISBN 13: 9781848163225
Author: Larry L. Altgilbers, Jason Baird, Bruce L. Freeman, Christopher S. Lynch, Sergey I. Shkuratov
Explosive pulsed power generators are devices that either convert the chemical energy stored in explosives into electrical energy or use the shock waves generated by explosives to release energy stored in ferroelectric and ferromagnetic materials. The objective of this book is to acquaint the reader with the principles of operation of explosive generators and to provide details on how to design, build, and test three types of generators: flux compression, ferroelectric and ferromagnetic generators, which are the most developed and the most near term for practical applications.Containing a considerable amount of new experimental data that has been collected by the authors, this is the first book that treats all three types of explosive pulsed power generators. In addition, there is a brief introduction to a fourth type ix explosive generator called a moving magnet generator. As practical applications for these generators evolve, students, scientists, and engineers will have access to the results of a considerable body of experience gained by almost 10 years of intense research and development by the authors.
Table of contents:
1. Introduction
1.1 What is Pulsed Power?
1.2 Pulsed Power Parameters
1.3 Explosive Power Sources
1.3.1 Flux Compression Generators
1.3.2 Explosive Magnetohydrodynamic Generators
1.3.3 Moving Magnet Generators
1.3.4 Ferroelectric Generators
1.3.5 Ferromagnetic Generators
1.4 Book Outline
Bibliography
2. Fundamentals of Electromagnetic Theory and Electric Circuits
2.1 Introduction
2.2 Maxwell’s Equations
2.3 Circuit Elements and Equations
2.3.1 Circuit Elements
2.3.1.1 Resistors
2.3.1.2 Inductors
2.3.1.3 Capacitors
2.3.1.4 Transformers
2.3.1.5 Switches
2.3.1.6 Transmission Lines
2.3.1.7 Insulation
2.3.2 Circuit Equations
2.3.3 Transient Circuits
2.4 Electromagnetic Phenomena
2.4.1 Magnetic Di.usion
2.4.2 Magnetic Force
2.4.3 Magnetic Pressure
2.4.4 Electric Fields
2.4.5 Electrical Breakdown
2.4.5.1 Gas Breakdown
2.4.5.2 Liquid Breakdown
2.4.5.3 Solid Breakdown
2.4.5.4 Surface Flashover
2.5 Summary
Bibliography
3. Fundamentals of Shock Waves and High Explosives
3.1 Introduction
3.2 Shock and Detonation Waves
3.2.1 Stress and Strain
3.2.2 Sound Velocity
3.2.3 ShockWaves
3.2.4 Detonation Waves
3.2.5 Detonation Jump Equations
3.3 Explosives and Explosive Components
3.3.1 Explosives
3.3.1.1 Categories of Explosives
3.3.1.2 Chemistry of Explosives
3.3.1.3 Explosive Thermochemistry
3.3.1.4 Chemical Kinetics
3.3.1.5 Factors That Affect Explosives
3.3.1.6 Explosive Power
3.3.2 Explosive Train
3.3.2.1 Detonators
3.3.2.2 Fire Set and Cabling
3.4 Interaction of Detonation Waves with Materials
3.4.1 Impedance
3.4.2 Gurney Equations
3.4.3 Taylor Angle Approximation
3.5 Summary
Bibliography
4. Measurement Techniques
4.1 High Power Electrical Measurements
4.1.1 Voltage Measurements
4.1.1.1 Resistive Voltage Divider
4.1.1.2 Capacitive Voltage Divider
4.1.1.3 Optical Voltage Monitors
4.1.2 Current Measurements
4.1.2.1 Pure Resistive Shunt Method
4.1.2.2 Rogowski Coil
4.1.2.3 Pearson Current Monitor
4.1.2.4 Current Viewing Resistor
4.1.2.5 Cavity Current Monitor
4.1.2.6 Magneto-Optical Current Sensor
4.1.3 Power and Energy Measurements
4.2 Pulsed Electric and Magnetic Field Measurements
4.2.1 B-Dot Probes
4.2.2 D-Dot Probes
4.2.3 Current Monitor Transformer
4.2.4 Antennae
4.2.4.1 Dipole Antenna
4.2.4.2 Monopole Antenna
4.2.4.3 Log Periodic Antenna
4.2.4.4 Vivaldi Antenna
4.2.5 Thin Film Sensors
4.3 DetonicMeasurement Techniques
4.3.1 Time of Arrival Detectors
4.3.2 Surface Displacement Detectors
4.3.3 Stress Versus Time Detectors
4.3.3.1 Piezoresistive Gages
4.3.3.2 Piezoelectric Gages
4.3.4 Cinematographic and Flash X-Ray Techniques
4.3.4.1 Shadowgraphs
4.3.4.2 Rotating-Mirror and Rotating-Drum Cameras
4.3.4.3 Image Converter and Electronic Cameras
4.3.4.4 Flash X-Ray Radiography
4.4 Summary
Bibliography
5. Flux Compression Generators
5.1 Classifications of FCGs
5.2 Historical Perspectives
5.3 Principles of Operation
5.3.1 General Principles
5.3.2 Some Important Generator Parameters
5.3.3 Generator Impedance
5.3.4 Example: An Idealised Generator
5.3.5 Advantages and Disadvantages
5.3.5.1 High Energy and Power Density
5.3.5.2 Adaptability
5.3.5.3 Pulse Shape Effects
5.3.5.4 Powering Parallel Loads
5.4 Specific Types of Generator
5.4.1 Plate Generators
5.4.2 Strip Generators
5.4.3 Cylindrical Implosion System
5.4.4 Coaxial Generators
5.4.5 Disk Generators
5.4.6 Loop Generators
5.4.7 Helical or Spiral Generators
5.4.8 Simultaneous Helical Generators
5.4.9 Shock Wave Generators
5.4.10 Summary of Generator Classes
5.5 Losses and Efficiencies
5.5.1 Diffusion Related Losses
5.5.2 Mechanical Related Losses
5.5.2.1 Mechanical Tolerances
5.5.2.2 Moving Contact Effects
5.5.2.3 Explosive Produced Jets
5.5.2.4 Undesired Component Motion
5.5.3 Efficiencies
5.6 Power Conditioning
5.6.1 Switches
5.6.1.1 Closing Switches
5.6.1.2 Opening Switches
5.6.2 Transformer Coupling
5.6.2.1 Powering a Large Inductance
5.6.2.2 Powering Large Resistances
5.6.3 Transformers
5.6.3.1 Helical-Wound Coils
5.6.3.2 Tape-Wound Coils
5.6.4 Generator Flux Sources (Seed Sources)
5.6.4.1 Capacitive Seed Sources
5.6.4.2 External Seed Coils
5.6.4.3 Booster Generators
5.6.4.4 Permanent Magnets, FEGs and FMGs
5.7 Summary
Bibliography
6. Helical Flux Compression Generators
6.1 Basic Theoretical Treatment
6.2 Figures of Merit
6.3 Loss Mechanisms
6.3.1 Electrical Loss Mechanisms
6.3.1.1 Magnetic Diffusion
6.3.1.2 Electrical Breakdown
6.3.1.3 Contact Point Resistance Model
6.3.2 Mechanical Loss Mechanisms
6.3.2.1 Mechanical Tolerances
6.3.2.2 Expansion and Fracturing
6.3.3 Geometrical Loss Mechanisms
6.3.3.1 Moving Contact E.ects
6.3.3.2 Explosive Produced Jets
6.3.3.3 Explosive Packing and Voids
6.3.3.4 Undesired Component Motion
6.4 Seed Sources for HFCGs
6.4.1 Capacitive Energy Stores
6.4.2 Batteries
6.4.3 Permanent Magnets
6.5 HFCGs with Simultaneous Axial Initiation
6.6 Cascaded HFCGs
6.7 Practical Design and Optimisation of HFCGs
6.7.1 Philosophy
6.7.2 PreliminaryDesign
6.7.3 Advanced Design
6.8 Small versus Large HFCGs
6.9 Computer Models
6.10 Summary
Bibliography
7. Magnetic Materials and Circuits
7.1 Properties of Magnetic Materials
7.1.1 Types of Magnetic Materials
7.1.2 Properties of Magnetic Materials
7.2 Shock Compression of Ferromagnetic Materials
7.3 Magnetic Circuits
7.3.1 Magnetic Circuit Laws
7.3.2 Magnetic Circuit Model for Permanent Magnets
7.4 Magnetic Loss Mechanisms
7.4.1 Hysteresis Loss
7.4.2 Eddy Current Loss
7.5 Summary
Bibliography
8. Ferromagnetic Generators
8.1 Explosive Driven Soft Ferromagnetic Generators
8.2 Explosive Driven Soft Ferromagnetic Generator Limitations
8.3 Pressure Induced Magnetic Phase Transitions in Hard Ferromagnets
8.3.1 Longitudinal Shock Wave Demagnetisation of Nd2Fe14B
8.3.2 Pressure in Shock Compressed Nd2Fe14B Ferromagnets
8.3.3 High Voltage and High Current Generation by Longitudinally Shock Demagnetising Nd2Fe14B.
8.4 Transverse Shock Wave Demagnetisation of Nd2Fe14B Ferromagnets
8.4.1 Static Magnetic Flux Initially Stored in Nd2Fe14B Ferromagnets
8.4.2 Transverse Shock Wave Demagnetisation of Nd2Fe14B Ferromagnets
8.5 Generation of High Currents by Miniature Transverse FMGs
8.5.1 The Physical Principle of Seed Current Generation
8.5.2 Magnetic Flux Changes in Transverse FMGs
8.5.3 Currents Produced by Transverse FMGs
8.6 FMG Analytical Techniques
8.6.1 Analytical Equations
8.6.2 Current Generated by Longitudinal FMGs
8.6.3 Current Generated by Transverse FMGs
8.6.4 Summary
8.7 Charging Capacitors with High Voltage Transverse FMGs
8.7.1 High Voltage Transverse FMG Design
8.7.2 Results and Discussion
8.7.3 Summary
8.8 Miniature High Voltage, Nanosecond FMG System
8.8.1 Operating Principles
8.8.2 Performance of the FMG-VIG System
8.8.3 Summary
8.9 Explosive Driven FMG-FCG System
8.9.1 FMG-FCG System
8.9.2 FMG-FCG Performance
8.10 Summary
Bibliography
9. Ferroelectric Materials and Their Properties
9.1 Introduction
9.2 Historical Perspectives
9.3 Electromechanical Effects in Ferroelectric Materials
9.4 Piezoelectric Figures ofMerit
9.4.1 Dielectric Constant/Permittivity
9.4.2 Dielectric Strength
9.4.3 Remnant Polarisation
9.4.4 Coercive Field
9.4.5 Compliance
9.4.6 Piezoelectric Charge Constant or Piezoelectric Coefficient
9.4.7 Piezoelectric Voltage Constant
9.4.8 Electromechanical Coupling Factor
9.4.9 Acoustic Impedance
9.5 Notation
9.6 FerroelectricMaterials
9.6.1 Single-Crystals
9.6.2 Ferroceramics
9.6.3 Ferropolymers
9.6.4 Ferrocomposites
9.6.5 Thin Films
9.7 Lead Zirconate Titanate (PZT)
9.7.1 PZT Properties
9.7.2 Important PZT Parameters
9.7.2.1 Intrinsic Effects
9.7.2.2 Extrinsic Effects
9.7.2.3 PZT 95/5
9.7.3 Fabrication of PZT
9.7.4 Factors that A.ect PZT
9.7.4.1 Dopants
9.7.4.2 Density and Porosity
9.7.4.3 Encapsulating Materials
9.7.4.4 Shock and Electric Field Amplitudes
9.7.5 Optimisation of PZT for FEGs
9.7.6 PZT Failure Modes
9.8 Chapter Summary
9.9 Suggested Reading on Ferromagnetic Materials
Bibliography
10. Phase Transformations in Ferroelectric Crystals
10.1 Introduction
10.2 Perovskite-Type ABO3 Crystal Structure
10.3 The PhaseDiagram
10.3.1 Cubic
10.3.2 Tetragonal
10.3.3 Rhombohedral, F
10.3.4 Rhombohedral, AF
10.3.5 Orthorhombic
10.3.6 Monoclinic A,B,C.
10.4 Single-Crystal Behavior
10.4.1 Domains (Crystal Variants)
10.4.2 Domain Walls
10.5 Driving Forces for Domain Wall Motion (Evolution of Variants, Poling and Depoling)
10.5.1 Mechanical Work
10.5.2 ElectricWork
10.5.3 Combined Stress and Electric Field
10.5.4 Orientation Effects (Orthogonal Transformations)
10.5.5 Stress
10.5.6 Electric Field
10.5.7 Kinetics of Variant Evolution
10.5.8 Volume Average Single Crystal Properties
10.6 Phases Transformations in Single Crystal
10.6.1 Ceramic Behavior
10.7 Properties of Soft, Hard and Phase Transforming PZT
10.7.1 PLZT 8/65/35 (Soft Rhombohedral Ferroelectric)
10.7.2 PLSnZT (AF-F Double Loop)
10.7.3 PZT 95-5
10.8 Discussion of the Rh (F) to Rh (AF) Phase Transformation and FEG Design
10.9 Summary
Bibliography
11. Ferroelectric Shock Depolarisation Studies
11.1 Early Shock Depolarisation Studies
11.2 Recent Shock Depolarisation Studies
11.2.1 Shock Induced Stress Test Methods
11.2.1.1 Projectile Impact Studies
11.2.1.2 Hugoniot States and Mechanical Properties
11.2.1.3 Shock Compression Studies
11.2.1.4 Depoling Studies
11.3 Early FEG Studies
11.4 Summary
Bibliography
12. Ferroelectric Generators
12.1 Introduction
12.2 Gas Gun Accelerated Projectiles
12.3 Electromagnetic Launcher Accelerated Flyer Plates
12.4 Propellant Gun Accelerated Projectiles
12.5 Explosive Driven Ferroelectric Generators
12.5.1 Design of Explosive Driven FEGs
12.5.2 Electrical Breakdown Problems
12.6 FEG Pulsed Power Generation: High Resistance Loads
12.7 Longitudinal Shock Wave Depolarisation of Polycrystalline PZT 54/48
12.7.1 Experimental Results
12.8 Pulse Charging Capacitor Banks with FEGs
12.8.1 FEG-Capacitor Bank System: Oscillatory Mode
12.8.2 Theoretical Description of FEG-Capacitor Bank Systems
12.8.3 FEG-Capacitor Bank Energy Transfer
12.9 Operation of FEGs with Resistive Loads
12.9.1 Experimental Results
12.10 Theoretical Models for FEGs
12.10.1 Single Element FEGs
12.10.1.1 Simulation Results and Discussions
12.10.2 Multi-Element FEG Model
12.10.2.1 Transverse Shocked Parallel Element FEG with an RLC Load
12.10.2.2 Transverse Shocked Series Element FEG with an Open-Circuit Load
12.10.3 Semi-Empirical Model for PZT Breakdown
12.11 High-Voltage Nanosecond FEG-VIG Pulsed Power System
12.11.1 General Design of a FEG-VIG Pulsed Power System
12.11.2 FEG-VIG System Performance
12.12 Other Factors That Affect FEG Design
12.12.1 Ferroelectric Material and Geometry
12.12.2 Potting Materials
12.12.3 Shock Wave Profile
12.13 Summary
Bibliography
13. Moving Magnet Generators
13.1 Principles of Operation
13.2 Moving Magnet Pulsed Power Generators
13.3 PrincipleMMG Designs
13.3.1 Open Magnetic Circuit MMGs
13.3.2 Closed Magnetic Circuit MMGs
13.3.3 MMG Ferromagnetic Projectiles
13.4 High-Current Explosive-Driven MMGs
13.4.1 Experimental Systems
13.4.2 Principles of High Current Generation
13.4.3 High Current MMG Seed Sources
13.5 High-Voltage Explosive-Driven MMGs
13.5.1 High-Voltage Generation
13.5.2 Multi-Stage High-Voltage MMGs
13.6 Summary
Bibliography
14. Case Studies
14.1 Introduction
14.2 Case Study 1: Piezoelectric High Voltage Generator
14.2.1 Three Ferroelectric Element Module Voltage Tests
14.2.2 Summary
14.3 Case Study 2: FEG-Driven Antenna
14.4 Case Study 3: FCG-Driven Microwave Test Bed
14.4.1 Fire Set
14.4.2 Compact Seed Source
14.4.3 Helical Flux Compression Generator
14.4.3.1 Helical FCG Overview
14.4.3.2 Fabrication Procedure
14.4.3.3 Dual-Stage Helical FCG Design
14.4.4 Power Conditioning System
14.4.5 Loads
14.5 Case Study 4: Birdseed Program
14.6 Summary
People also search:
explosive pulsed power
explosive power jumper
explosive powers
explosion power calculator
a powerful explosive
Tags: Larry Altgilbers, Jason Baird, Bruce Freeman, Explosive


