Strapdown Inertial Navigation Technology 2nd Edition by David Titterton, John Weston – Ebook PDF Instant Download/Delivery: 0863413587, 9780863413582
Full download Strapdown Inertial Navigation Technology 2nd Edition after payment
Product details:
ISBN 10: 0863413587
ISBN 13: 9780863413582
Author: David Titterton , John Weston
Inertial navigation is widely used for the guidance of aircraft, missiles ships and land vehicles, as well as in a number of novel applications such as surveying underground pipelines in drilling operations. This book sets out to provide a clear and concise description of the physical principles of inertial navigation, the associated growth of errors and their compensation. There is also detailed treatment of recent developments in inertial sensor technology and a description of techniques for implementing and evaluating such systems. This new edition includes a number of refinements covering sensor technology, geodesy and error modelling, the major additions to the original text are new chapters on MEMS technology and intertial system applications.Also available:Radar Techniques Using Array Antennas
Table of contents:
1.1 Navigation
1.2 Inertial Navigation
1.3 Strapdown Technology
1.4 Layout of the Book
2.1 Basic Concepts
2.3 Historical Developments
2.4 The Modern-day Inertial Navigation System
2.5 Trends in Inertial Sensor Development
3.2 A Simple Two-dimensional Strapdown Navigation System
3.3 Reference Frames
3.4.1 Navigation with Respect to a Fixed Frame
3.4.4 Resolution of Accelerometer Measurements
3.5 Strapdown System Mechanisations
3.5.1 Inertial Frame Mechanisation
3.5.2 Earth Frame Mechanisation
3.5.3 Local Geographic Navigation Frame Mechanisation
3.5.4 Wander Azimuth Navigation Frame Mechanisation
3.6.1 Introductory Remarks
3.6.2 Direction Cosine Matrix
3.6.3 Euler Angles
3.6.4 Quaternions
3.6.5 Relationships between Direction Cosines, Euler Angles and Quaternions
3.7.1 Navigation Equations Expressed in Component Form
3.7.2 The Shape of the Earth
3.7.3 Datum Reference Models
3.7.4 Variation of Gravitational Attraction over the Earth
4.1 Introduction
4.2.2 Fundamental Principles
4.2.3 Components of a Mechanical Gyroscope
4.2.4 Sensor Errors
4.2.5 Rate-integrating Gyroscope
4.2.6 Dynamically Tuned Gyroscope
4.2.7 Flex Gyroscope
4.3.1 Dual-axis Rate Transducer (DART)
4.3.2 Magnetohydrodynamic Sensor
4.4.1 Introduction
4.4.2 Vibrating Wine Glass Sensor
4.4.3 Hemispherical Resonator Gyroscope
4.4.4 Vibrating Disc Sensor
4.4.6 Quartz Rate Sensor
4.4.7 Silicon Sensor
4.4.8 Vibrating Wire Rate Sensor
4.4.9 General Characteristics of Vibratory Sensors
4.5.1 Nuclear Magnetic Resonance Gyroscope
4.6 Electrostatically Suspended Gyroscope
4.7.1 Fluidic (Flueric) Sensors
4.7.2 Fluxgate Magnetometers
4.7.3 The Transmission Line Gyroscope
5.1.1 Introduction
5.1.2 Fundamental Principles
5.1.3 Ring Laser Gyroscope
5.1.5 Fibre Optic Gyroscope
5.1.6 Photonic Crystal Optical Fibre Gyroscope
5.1.7 Fibre Optic Ring Resonator Gyroscope
5.1.8 Ring Resonator Gyroscope
5.1.9 Integrated Optical Gyroscope
5.2.1 Introduction
5.2.2 Rotation Sensing
5.2.3 Measurement of Acceleration
5.2.4 Gravity Gradiometer
5.3 Summary of Gyroscope Technology
6.2 The Measurement of Translational Motion
6.3.2 Principles of Operation
6.3.3 Sensor Errors
6.3.4 Force-feedback Pendulous Accelerometer
6.3.5 Pendulous Accelerometer Hinge Elements
6.3.6 Two-axes Force-feedback Accelerometer
6.4 Solid-state Accelerometers
6.4.1 Vibratory Devices
6.4.2 Surface Acoustic Wave Accelerometer
6.4.3 Silicon Sensors
6.4.4 Fibre Optic Accelerometer
6.4.6 Other Acceleration Sensors
6.5.2 Rotating Devices
6.5.3 Vibratory Multi-sensor
6.5.4 Mass Unbalanced Gyroscope
6.6 Angular Accelerometers
6.6.1 Liquid Rotor Angular Accelerometer
6.6.2 Gas Rotor Angular Accelerometer
6.7 Inclinometers
6.8 Summary of Accelerometer and Multi-sensor Technology
7.1 Introduction
7.2 Silicon Processing
7.3.1 Introduction
7.3.2 Tuning Fork MEMS Gyroscopes
7.3.3 Resonant Ring MEMS Gyroscopes
7.4.1 Introduction
7.4.2 Pendulous Mass MEMS Accelerometers
7.4.3 Resonant MEMS Accelerometers
7.4.4 Tunnelling MEMS Accelerometers
7.4.5 Electrostatically Levitated MEMS Accelerometers
7.6 Multi-axis/Rotating Structures
7.7.1 Silicon IMU
7.7.2 Quartz IMU
7.8 System Integration
7.9 Summary
8.1 Introduction
8.2 Testing Philosophy
8.3 Test Equipment
8.4 Data-logging Equipment
8.5.1 Stability Tests – Multi-position Tests
8.5.2 Rate Transfer Tests
8.5.3 Thermal Tests
8.5.5 Magnetic Sensitivity Tests
8.5.6 Centrifuge Tests
8.5.7 Shock Tests
8.5.8 Vibration Tests
8.5.9 Combination Tests
8.5.10 Ageing and Storage Tests
8.6 Accelerometer Testing
8.6.2 Long-term Stability
8.6.4 Magnetic Sensitivity Tests
8.6.5 Centrifuge Tests
8.6.7 Vibration Tests
8.6.8 Combination Tests
8.6.9 Ageing and Storage Tests
8.7.1 Introduction
8.7.3 Accelerometer Error Compensation
8.8 Testing of Inertial Navigation Systems
8.9 Hardware in the Loop Tests
9.2 The Components of a Strapdown Navigation System
9.3.1 Orthogonal Sensor Configurations
9.3.2 Skewed Sensor Configurations
9.3.3 A Skewed Sensor Configuration Using Dual-axis Gyroscopes
9.3.4 Redundant Sensor Configurations
9.4 Instrument Electronics
9.5 The Attitude Computer
9.6 The Navigation Computer
9.9 Concluding Remarks
10.1 Introduction
10.2.1 Alignment on a Fixed Platform
10.2.2 Alignment on a Moving Platform
10.3.1 Introduction
10.3.2 Ground Alignment Methods
10.3.3 Northfinding Techniques
10.4.3 In-flight Alignment Methods
10.5.2 Sources of Error
10.5.3 Shipboard Alignment Methods
11.1 Introduction
11.2 Attitude Computation
11.2.1 Direction Cosine Algorithms
11.2.2 Rotation Angle Computation
11.2.3 Rotation Vector Compensation
11.2.4 Body and Navigation Frame Rotations
11.2.5 Quaternion Algorithms
11.2.6 Orthogonalisation and Normalisation Algorithms
11.3 Acceleration Vector Transformation Algorithm
11.3.1 Acceleration Vector Transformation Using Direction Cosines
11.3.2 Rotation Correction
11.3.3 Dynamic Correction
11.4 Navigation Algorithm
11.5 Summary
12.1 Introduction
12.2.1 Navigation in a Non-rotating Reference Frame
12.2.2 Navigation in a Rotating Reference Frame
12.2.3 The Schuler Pendulum
12.2.4 Propagation of Errors in a Schuler Tuned System
12.2.5 Discussion of Results
12.3.1 Derivation of Error Equations
12.3.2 Discussion
12.4.1 Single Channel Error Model
12.4.2 Derivation of Single Channel Error Propagation Equations
12.4.3 Single-channel Error Propagation Examples
12.5.1 Introductory Remarks
12.5.2 Error Modelling
12.5.3 Simulation Techniques
12.6 Motion Dependence of Strapdown System Performance
12.6.1 Manoeuvre-dependent Error Terms
12.6.2 Vibration Dependent Error Terms
12.7 Summary
13.1 Introduction
13.2 Basic Principles
13.3.1 Radio Navigation Aids
13.3.2 Satellite Navigation Aids
13.3.3 Star Trackers
13.3.4 Surface Radar Trackers
13.4.1 Doppler Radar
13.4.2 Magnetic Measurements
13.4.3 Altimeters
13.4.4 Terrain Referenced Navigation
13.4.5 Scene Matching
13.4.6 Continuous Visual Navigation
13.5 System Integration
13.6.1 Introduction
13.6.2 Design Example of Aiding
13.7 INS-GPS Integration
13.7.1 Uncoupled Systems
13.7.2 Loosely Coupled Integration
13.7.3 Tightly Coupled Integration
13.7.4 Deep Integration
13.7.6 INS Aiding of GPS Signal Tracking
13.8 Multi-sensor Integrated Navigation
13.9 Summary
14.1 Introduction
14.2 Background to the Requirement
14.3.2 Operating and Storage Environment
14.3.3 Performance
14.3.5 Physical Characteristics
14.5.1 Introduction
14.5.2 Choice of System Mechanisation
14.5.3 Error Budget Calculations
14.5.4 System Alignment
14.5.5 Choice of Inertial Instruments
14.5.6 Computational Requirements
14.5.7 Electrical and Mechanical Interfaces
14.7 Performance Enhancement by Aiding
14.8 Concluding Remarks
15.1 Introduction
15.2.1 Introduction
15.2.2 Historical Background
15.2.3 Inertial Survey System
15.2.4 System Design Requirements
15.2.5 System Design Issues
15.2.6 System Calibration and Test
15.2.7 Concluding Remarks
15.3 Ship’s Inertial Navigation Systems (SINS)
15.3.1 NATO SINS
15.4.1 Autopilots
15.4.2 Passive Missile Roll Control (Rollerons)
15.4.3 Intelligent Transport Systems – Automotive Applications
15.4.5 Personal Transport
15.5 Equipment Stabilisation
15.5.1 Aero-flexure Compensation
15.5.2 Laser Beam Director
15.5.3 Laser Radar
15.5.4 Seeker-head Stabilisation
15.5.5 Sightline Stabilisation
15.5.6 Relative Angular Alignment
15.5.7 Calibration and Measurement
15.6 Geodetic and Geophysical Measurements and Observation of Fundamental Physical Phenomena
15.7.1 Moving-map Displays
15.7.2 Safety and Arming Units
15.7.3 Aircraft Ejection Seats
15.7.5 Artillery Pointing
15.7.6 Other Unusual Applications
15.8 Concluding Remarks
People also search:
what is strapdown inertial navigation system
inertial navigation system explained
types of inertial navigation system
strapdown inertial navigation technology pdf
strapdown inertial navigation technology
Tags: David Titterton.John Weston, Strapdown, Navigation